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The space-time epidemic-type aftershock sequence model is a stochastic branching process in which earth-
quake activity is classified into background and clustering components and each earthquake triggers other
earthquakes independently according to certain rules. This paper gives the probability distributions associated
with the largest event in a cluster and their properties for all three cases when the process is subcritical, critical,
and supercritical. One of the direct uses of these probability distributions is to evaluate the probability of an
earthquake to be a foreshock, and magnitude distributions of foreshocks and nonforeshock earthquakes. To
verify these theoretical results, the Japan Meteorological Agency earthquake catalog is analyzed. The propor-
tion of events that have 1 or more larger descendants in total events is found to be as high as about 15%. When
the differences between background events and triggered event in the behavior of triggering children are
considered, a background event has a probability about 8% to be a foreshock. This probability decreases when
the magnitude of the background event increases. These results, obtained from a complicated clustering model,
where the characteristics of background events and triggered events are different, are consistent with the results
obtained in �Ogata et al., Geophys. J. Int. 127, 17 �1996�� by using the conventional single-linked cluster
declustering method.
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I. INTRODUCTION

The foreshock has been one of the most important topics
in the research of seismicity pattern and earthquake predic-
tion for decades �see, e.g., �1–22��. Some researchers believe
that there is no difference between foreshocks and main-
shocks except in magnitudes of following earthquakes, that
is to say, foreshocks are mainshocks whose aftershocks hap-
pen to be bigger ��23–29��. This assertion leads to a propo-
sition that prediction made based on foreshock studies can-
not be improved from prediction based on clustering models.

To test the above assertion, we need a good model of
earthquake clustering. Such a test can be carried out by find-
ing whether there are distinguishing features between the
patterns of foreshocks and mainshocks in triggering seismic-
ity. Among them, it is important to know the probability of
foreshocks under the assumptions of a simple clustering
model.

There have been many studies on the modeling of earth-
quake clustering. The most primary model is to use the
modified Omori formula for occurrence times of aftershocks,
and the Gutenber-Richter law for their magnitude
��12,23,24��. Console ��30�� and Savage and dePolo ��31��
use this model to evaluate the probability that an earthquake
has one or more aftershocks larger in magnitude.

A more advanced type of clustering models is branching
type ��32–43��. Among them, the epidemic-type aftershock

sequence �ETAS� models are generally adopted �see, e.g.,
�38,44��. These models assume that the seismicity can be
divided into a background component and a clustering com-
ponent, and that each event, no matter whether it is from the
background or directly triggered by another event, triggers
its own offspring according to some general rules.

In this paper, we first give a brief description of necessary
concepts associated with the ETAS model in this study, then
evaluate the probability that the magnitude of the largest de-
scendant is less than a given magnitude. Based on this prob-
ability, we derive the probability density of the magnitude
distribution of foreshocks. To verify our theory, the Japan
Meterological Agency �JMA� catalog is analyzed using the
stochastic reconstruction method in Sec. V.

II. DEFINITION OF THE ETAS MODEL

In the ETAS model, the time-varying seismicity rate
�mathematically termed as conditional intensity; see, e.g.,
�45�, Chap. 7� takes the form of

��t,x,y,m� = ��t,x,y,m� + �
i:ti�t

��t,x,y,m;ti,xi,yi,mi� ,

�1�

where ��t ,x ,y ,m� represents the background seismicity rate
and ��t ,x ,y ,m ; ti ,xi ,yi ,mi� is the contribution to seismicity
rate by the ith event occurring previously. In this model,
there is no difference in triggering seismicity between fore-
shocks, mainshocks, and aftershocks. In practice, it is usual
to make the following assumptions:

�1� The whole process is magnitude separable, i.e.,
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��t,x,y,m� = ��t,x,y�s�m� , �2�

where

��t,x,y� = ��t,x,y� + �
i:ti�t

��t,x,y ;ti,xi,yi,mi� , �3�

and

s�m� = �e−��m−mc�, m � mc �4�

is the probability density function �pdf� for all the magni-
tudes �Gutenburg-Richter law�, � being a constant and mc
being the magnitude threshold.

�2� The background rate is stationary, i.e.,

��t,x,y� = ��x,y�; �5�

�3� The response function ��t ,x ,y ; t� ,x� ,y� ,m�� is sepa-
rable, in the form of

��t,x,y ;t�,x�,y�,m�� = ��m��g�t − t��f�x − x�,y − y�,m�� ,

�6�

where

��m� = Ae��m−mc�, m � mc, �7�

is the mean number of children �direct offspring� from an
event sized m, and

g�t� =
p − 1

c
�1 +

t

c
�−p

, t 	 0, �8�

and

f�x,y ;m� =
q − 1


De��m−mc��1 +
x2 + y2

De��m−mc��−q

�9�

are the pdf’s for the occurrence times and locations of chil-
dren �direct offspring�, respectively. In Eqs. �7�–�9�, A, �, c,
p, D, q, and � are constant parameters.

In this paper, we call ��m� the triggering ability from an
event of magnitude m. Equation �8� is the probability density
form of the Omori-Utsu formula �see �46�, �47�, or, �48� for
a review�. The form of �9� is based on the analysis in �43�
and �44�.

For a realization of the process, ��ti ,xi ,yi ,mi� : i
=1, . . . ,N	, in a spatial region S and a time interval �0,T�,
the logarithm-likelihood has the standard form

ln L = �
i

ln ��ti,xi,yi,mi� − 

0

T 
 

S

��t,x,y�dt dx dy ,

+ �
i

ln s�mi� , �10�

where the subscript i runs over all the events in the region S
and time interval �0,T�. The parameters in the model can be
estimated by maximizing the logarithm-likelihood function.
For the version of a model with nonhomogeneous back-
ground, the estimation procedure can be found in �41–43�.

FIG. 1. Influence of A, �,and � to function F�m�. �a� Parameter
A changes, but �=1.2 and �=2.4 are fixed; �b� Parameter �
changes, but A=0.3 and �=2.4 are fixed; �c� Parameter � changes,
but A=0.3 and �=1.2 are fixed. The thin solid, thick solid, and
dashed curves represent the subcritical, critical, and supercritical
regimes, respectively.
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III. THEORETICAL DISTRIBUTIONS ASSOCIATED WITH
THE LARGEST MAGNITUDE OF ALL THE

DESCENDANTS FROM A GIVEN EVENT

A. Basic equations

Note the number of children from an event of magnitude
m is a Poisson random variable with a mean of ��m�. The
probability that an event of magnitude m has no offspring
greater than m� can be derived from the model analytically
��49��, i.e.,

��m,m�� = Pr�an event sized m has no offspring 	 m�	

= �
n=0



Pr�each child is � m� and has no offspring

	 m��m has n direct offspring	

� Pr�m has n children	

= �
n=0

 �

mc

m�
s�u���u,m��dun ���m��n

n!
e−��m�

= exp�− ��m��1 − 

mc

m�
s�m*���u,m��du� . �11�

It is evident that ��m ,m�� has the form

��m,m�� = exp�− ��m�F�m��� , �12�

where

F�m�� = 1 − 

mc

m�
s�m*�exp�− ��m*�F�m���dm* �13�

represents the probability that the largest earthquake in an
arbitrary cluster, including the initial event and all its descen-
dants, is greater than m�.

Because F�m� is a function determined by ��m� and s�m�,
it is influenced only by the parameters A, �, and � in the

model. Substituting Eqs. �4� and �7� into Eq. �13�,

F�m�� = 1 − ��−�/��AF�m��� − �−�/��AF�m��e��m�−mc���

�
�

�
�AF�m����/�, �14�

where �a�x�=�x
e−uuadu is the complementary incomplete

gamma function. Based on the analysis with moment gener-
ating functions, Saichev and Sornette �50� also gave similar
forms of the above equations. But, they did not discuss the
case when the process is supercritical. In this paper, we are
going to discuss the properties of � under all the three cases:
�1� subcritical case, where each family tree dies off finally
and the whole process is stable and stationary; �2� critical
case, where each family tree dies off with a long tail and the
population of the whole process in unit time increases un-
boundedly; and, �3� supercritical case, where some of the
family trees may never die off and the population of the
whole process will be explosive.

According to Appendix A, the critical parameter � is
determined by

� = 

mc

+

��m�s�m�dm . �15�

Substituting �4� and �7� into the above equation, we have

� =
A�

� − �
. �16�

It is evident that �	� is required. Also, when A increases, �
increases, or � decreases, the critical parameter � increases.
As is shown later, the influences of these three parameters, A,
�, and �, to � and F is mainly due to their influences on the
critical parameter � through the above equation.

Function F�m� is closely related to the extinct probability
of the family tree starting from an event of magnitude m,
namely Pc�m�. Pc�m� can be derived in the following way:

Pc�m� = Pr�The family tree from an event of magnitude m extinguishes	

= Pr�an event of magnitude m produces finite number of offspring	

= �
n=0



Pr�each child produces finite number of offspring�m has n children	Pr�m has n children	

= �
n=0

 �

mc

+

s�m*�Pc�m*�dm*n ���m��n

n!
e−��m� = exp�− ��m��1 − 


mc

+

s�m*�Pc�m*�dm*� . �17�

Substitute Pc�m�=exp�−C��m�� into Eq. �17�; we have

C = 1 − 

mc

+

s�m*�exp�− C��m*��dm*. �18�

Substitute Eqs. �4� and �7� into Eq. �18�,

C = 1 −
�

�
C−�/���−

�

�
,C� . �19�

Compare Eq. �18� to Eq. �13�,
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lim
m→+

F�m� = C = −
ln Pc�m�

��m�
. �20�

It is easy to prove that �18� has one solution C in �0,1� if and
only if the process is supercritical, i.e., �=�mc

 ��m�s�m�dm
	1.

B. Criticality and �„m ,m�…

For the subcritical case, which requires �	� and �
=A� / ��−���1, it is easy to see that ��m ,m��→1 when
m�→ + because C=0. That is to say, when the process is
subcritical, the larger the event, the less chance that it has a
larger descendant. To discuss how fast � tends to 1, or how
fast ln � tends to zero, it is useful to use the following ap-
proximation. If � is not an integer,

���x1� − ���x2� = 

x1

x2

u�−1e−u du = �
n=0

+
�− 1�n�x2

n+� − x1
n+��

n!�n + ��
;

�21�

if �=−k is a nonpositive integer, we can replace the kth item
in the summation by �−1�k In�x2 /x1� /k!. Equations �14� and
�21� give

F�m� = 1 −
�

�
�AF�m���/��

n=0

+

�− 1�nXn�m� , �22�

where

Xn�m�

=�
�AF�m�e��m−mc��n−��/�� − �AF�m��n−��/��

n!�n −
�

�
� ,

n �
�

�

��m − mc�
n!

, n =
�

�
�

�23�

i.e.,

F�m� = e−��m−mc� +
A�

� − �
F�m��1 − e��−���m−mc�� + ¯ .

�24�

Because we are looking for the solution of F�m� such that
F�m�e��m−mc�→0 when m→, Eq. �24� can approximate by
keeping the first two terms, which gives

F�m� �
e−��m−mc�

1 −
A�

� − �
�1 − e��−���m−mc��

=
e−��m−mc�

1 − ��1 − e��−���m−mc��
.

�25�

The above equation implies that, when the process is sub-
critical,

lim
m→+

F�m�
s�m�

=
1

��1 − ��
. �26�

Furthermore, in the subcritical case, according to Eqs. �12�
and �26�, for a fixed m, when m� is large enough,

FIG. 2. �Color� Image of the function ��m ,m��: �a� Subcritical case with A=0.3, �=1.2, and �=2.4; �b� Critical case with A=0.5, �
=1.2, and �=2.4; and �c� supercritical case with A=0.7, �=1.2, and �=2.4.

FIG. 3. Foreshock probabilities for background events of differ-
ent magnitudes, i.e., H�m�=1−��M ,M�, with parameters being �A
=0.3, �=1.2, �=2.4�, �A=0.5, �=1.2, �=2.4�, and �A=0.7, �
=1.2, �=2.4� for the subcritical, critical, and supercritical,
respectively.
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��m,m�� � exp�−
1

��1 − ��
s�m����m�

= exp�−
A�

��1 − ��
e�m−�m� , �27�

where A�=Ae��−��mc, i.e., ��m ,m�� could be approximately
regarded as a function of �m−�m�.

The limit properties for the critical case can be obtained
by letting �→1 in Eq. �25�,

F�m� � e−��m−mc� � ���m��−1. �28�

In other words, when m is large enough and the process is
critical,

��m,m�� � exp�− Ae��m−m��� �29�

is approximately a function of m−m�.
When the process is supercritical, �	1 and C	0. Equa-

tion �20� yields

lim
m�→

��m,m�� = lim
m�→

e−��m�F�m�� = e−C��m� = Pc�m�� ,

�30�

implying that ��m ,m�� is only a function of m when m� is
sufficiently large. That is, when m� is sufficiently large, de-
scendants of any magnitudes may be produced, because the
probability that the population of the family tree is infinite is
greater than 0 in the supercritical case.

C. Numerical results

By using the iteration given in Eq. �13� or Eq. �14�, F�m�
can be solved. In Fig. 1, we first fixed two of A, �, and �,
and then changed the other to see how F�m� changes. As we
have discussed above, the influence of all the three param-
eters, �, �, and A, to F�m� is through their influence to the
criticality, i.e., the properties of F�m� can be divided into
three regimes: subcritical, critical, and supercritical, where
F�m��s�m�, F�m��1/��m�, and F�m��C, respectively.

Once F�m� is evaluated, we can plot the image of
��m ,m�� according to �12�, as shown in Fig. 2. Basically, in
the subcritical case, the contour line corresponding to
��m ,m��=const�exp�−�A�/��1−���e�m−�m�	 approximately
parallel to a slope of � /� �see Eq. �27� for justification�. This

FIG. 4. Seismicity in the Japan
region and nearby during 1926–
1999 �MJ�4.2�. �a� Epicenter lo-
cations; �b� Latitudes of epicenter
locations against occurrence
times. The shaded region repre-
sents the studied space-time
range.

FIG. 5. �Color� Comparison between the theoretical ��m ,m�� and reconstructed �̂�m ,m�� for the JMA catalog. Left panel: ��m ,m��; right

panel: �̂�m ,m��.
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asymptotic slope becomes 1 when the process is critical �see
Eq. �29��. In the supercritical case, the contour lines are as-
ymptotically parallel to the m� axis. Or explicitly, in the su-
percritical case, for a fixed m, when m�→ �20� and �30�
give F�m��→C and ��m ,m��→exp�−C��m��= Pc�m�, inde-
pendent from m�. These results are consistent with our ana-
lytic discussions.

IV. DEFINITION AND MAGNITUDE DISTRIBUTIONS
OF FORESHOCKS

As noted in the Introduction, in conventional studies fore-
shocks are defined as nonaftershock earthquakes that are fol-
lowed by one or more larger earthquakes occurring nearby.
Such a definition is only applicable to a de-aftershocked
catalog. De-aftershocking is conventionally carried out by
using a window-based or link-based declustering method
�see Refs. �47,51,52�, for window-based declustering
method; and Refs. �53–55� for link-based declustering meth-
ods; or �56� for a review�. However, the window size or the

link distance in the conventional definitions of earthquake
clusters are difficult to determine. Similarly, parameters of
the maximum time lag and the maximum distance between
the foreshock and the mainshock are hard to decide. To avoid
the above difficulties, we define a foreshock by a background
event that has at least one offspring, direct or indirect, with a
larger magnitude. Here, we refer to �41,42� or Appendix B
on how to determine whether an earthquake is a background
event, a triggered event, or a foreshock by using the stochas-
tic declustering method.

Recalling �11�, the probability that an event of magnitude
m is a foreshock is the same probability that an event of
magnitude m produces at least one descendant greater than
m, i.e.,

H�m� = 1 − ��m,m� . �31�

Thus the probability density functions of the magnitude dis-
tributions of foreshocks and nonforeshock events are

sf�m� =
s�m�H�m�



mc

+

s�m�H�m�dm

� s�m��1 − ��m,m�� , �32�

and

sn�m� =
s�m��1 − H�m��



mc

+

s�m��1 − H�m��dm

� s�m���m,m� , �33�

respectively. In other words, both magnitude distributions
departure from the exponential distribution or the
Gutenburg-Richter �GR� law for all the events.

H�m� is shown in Fig. 3. When the process is supercriti-
cal, from Eqs. �30� and �31�,

lim
m→+

H�m� = 1 − lim
m→+

��m,m� = 1 − lim
m→+

e−C��m� = 1,

�34�

indicating that a background event is always a foreshock if it
is sufficiently large. When the process is critical, by Eq. �29�,

lim
m→+

H�m� = 1 − lim
m→+

��m,m� = 1 − e−A, �35�

indicating that, if the magnitude is sufficiently large, it has a
constant probability between 0 and 1 to be a foreshock. For
the subcritical case, by Eq. �27�,

FIG. 6. Reconstruction of the magnitude distributions, ŝb�m� of
the background events, ŝc�m� of the triggered events, and s�m� of all
the events �a� for the JMA catalog and �b� for the simulated catalog
�from Zhuang et al. �42��. Corresponding ratios of the reconstructed
densities to the theoretic density, ŝb�m� /s�m�, ŝc�m� /s�m�,
ŝ�m� /s�m� for �c� the JMA catalog and �d� the simulated catalog,
where s�m� is from the fitted ETAS model.

FIG. 7. Reconstruction of the triggering abili-
ties �b�m� of the background events and �c�m�
for the triggered events in �a� the JMA catalog
and in �b� a simulated catalog �from Zhuang et al.
�42��. For comparison, the empirical functions of
the triggering abilities for all the events are plot-
ted as gray circles, and the corresponding theoret-
ical functions, ��m�=Ae�m, are represented by
the straight lines.
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lim
m→+

H�m� = 1 − lim
m→+

��m,m� = 1 − lim
m→+

exp�−
Ae��−��m

��1 − ��
=0,

indicating that the probability that a background event is a
foreshock decreases to 0 when its magnitude increases to a
sufficiently large value.

In practice, given an earthquake catalog, we can first fit
the model to the catalog to obtain the parameters in the
branching structure, then calculate ��m ,m��, H�m�, and sf�m�
according to the formulas derived in Secs. III and IV, to find
out the proportion of foreshocks and nonforeshock events in
the catalog and their magnitude distributions.

V. DATA ANALYSIS AND RESULTS

The dataset used in this study is the Japan Meteorological
Agency �JMA� catalog in a range of longitude 121°–155°E,
latitude 21°–48°N, depth 0–100 km, time 1926/January/1–
1999/December/31 and magnitude �MJ4.2 �Fig. 4�. For an
earthquake catalog covering records of a long history, com-
pleteness and homogeneity are always problems causing
trouble for statistical analysis. To tackle these problems, we
choose a target space-time range, in which the seismicity
seems to be relatively complete and homogeneous. The in-
completeness of the early period and inhomogeneity in the
JMA dataset can be easily seen from Fig. 4�b�. We choose a
polygon as shown in Fig. 4�a� as the target region and a time
period of 10 000–26 814 days after 1926/Janary/1, with the
same depth and magnitude ranges as the whole dataset. The
events outside of this study space-time range are used as

complementary events for calculating the boundary effect.
Using the technique described by Zhuang et al. �41,42�,

the model parameters are estimated by maximizing the like-

lihood function: Â=0.1692, ĉ=0.0189 day, �̂=1.5014, p̂

=1.1181, D̂2=0.000 864 0 deg2, q̂=1.9107, �̂=1.0761, and

�̂=1.9585.
There are two ways to evaluate ��m ,m��: one is based on

solving Eq. �12� with the parameters from the fitting results;
the other is based on the reconstruction technique given in
Appendix B. We used the terms of theoretical results and
reconstruction results to represent the results obtained from
these two methods, respectively. In order to avoid the edge
effect caused by missing observations of offspring of the
events near the end of the time interval, we restrict the events
within the time between 10 000–20 000 for reconstruction.

The theoretical ��m ,m�� and the reconstructed �̂�m ,m�� for
the JMA are shown in Fig. 5. Roughly speaking, the theoret-

ical ��m ,m�� is close to the model, while �̂�m ,m�� is close to
the data. In calculating the theoretical one in the left panel,
we use the empirical magnitude distribution for the events
falling in the study space-time range as s�m�. The overall
impression of these two images is their similarity to each
other, even though the theoretical one is more smooth than
the reconstructed one. The contour lines in the left panel are
not as straight because the magnitude distribution of the real
catalog is slightly different from the GR law, which has an
exponential distribution, while the real catalog has a pdf of
magnitudes with a tail that decays more quickly than the pdf
of the exponential distribution.

Plotting H�m� and Ĥ�m� in Fig. 8, we can see that, even if
there is no big discrepancy between these two functions, the
probability for an event to produce at least one larger descen-
dant is about 15%, which seems much higher than what has
been estimated in Ref. �10�.

According to Zhuang et al. �42�, such high probabilities
may be explained by the different characteristics of back-
ground events and their descendants, outlined as follows.

�1� The magnitude distributions of background events
and triggered events are different. If we denote the magni-
tude pdf’s by sb�m� and sc�m� for the background events and

FIG. 8. Probabilities that events of different magnitudes have at
least one large descendant in the JMA catalog. Circles, triangles,

and crosses represent the reconstructed Ĥ�m�, Ĥc�m�, and Ĥb�m� for
all the events, background events and triggered events, respectively.
The solid, dotted, and dashed curves are theoretical results for all
the events, background events, and triggered events, respectively,
computed by using the empirical �̂�m�, �̂b�m�, �̂c�m�, ŝ�m�, ŝb�m�,
and ŝc�m�.

FIG. 9. Estimated probabilities that events of different magni-
tudes have at least one descendant of a magnitude 0.45 larger, i.e.,

1− �̂�m ,m+0.45�, in the JMA catalog.
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triggered events, respectively, sb�m� has a higher Gutenburg-
Richter b value �or �=b ln 10 in Eq. �4�, as shown in Fig. 6�.
For the JMA catalog, �=2.1 for background events and �
=1.8 for triggered events. This seems contrary to our knowl-
edge that mainshocks usually have a smaller b value than
aftershocks. The background events are initial events of each
cluster, but not the largest events �mainshocks�, and thus
have a lower mean magnitude than mainshocks and a higher
b value. This low b value indicates that clusters tend to be
initiated by small events.

�2� A triggered event triggers more direct children on av-
erage than a background event of the same magnitude �Fig.
7�. This can be explained by the fact that the number of
children events triggered by a parent event depends not only
on the parent’s magnitude, but also on the heterogeneity of
the stress field. The more heterogeneous the stress field, the
more children each parent triggers. At the beginning of an

earthquake cluster, the stress field is at a relatively homog-
enous state. The stress field becomes more heterogeneous as
the cluster evolves until it is adjusted by the occurrence of
most events in the cluster. The stress field recovers to a state
being relatively homogeneous at the final stage of the cluster.
Here, we denote the productivity from a background event
and a triggered event by �b�m� and �c�m�, respectively.

To evaluate the probability that a triggered event of mag-
nitude m has no descendant larger than m�, we can just re-
place s and � in Eq. �11� with sc and �c,

�c�m,m�� = exp�− �c�m��1 − 

mc

m�
sc�m*��c�m*,m��dm*� .

�37�

For a background event of magnitude m, the corresponding
probability becomes

�b�m,m�� = Pr�a background event of magnitude m has no offspring greater than m�	

= �
n=0



Pr�each child is � m� and has no offspring 	 m��m has n children	 � Pr�m has n direct offspring	

= �
n=0

 �

mc

m�
sc�m*��c�m*,m��dm*n ��b�m��n

n!
e−�b�m� = exp�− �b�m��1 − 


mc

m�
sc�m*��c�m*,m��dm*� . �38�

Using the stochastic reconstruction techniques introduced in
�42�, we reconstruct �b, �c, and sc, and then use them to
calculate Hb and Hc. However, Hb and Hc can also be recon-
structed directly �see Appendix B�. As we can see in Fig. 8,
theoretical curves of Hb and Hc are still close to the recon-
structed ones, Ĥb and Ĥc, respectively. Basically, the prob-
ability that a background earthquake of magnitude about 4.2
to 5 triggers a larger earthquake is around 8%.

It is worthwhile to mention the differences between our
results and those obtained by Ogata et al. �10�. Ogata et al.
�10� used the “magnitude-based clustering” �MBC� and the
“single-link clustering” �SLC� methods to separate the JMA
catalog into different clusters. They defined the largest event
in a cluster to be mainshock. Their foreshocks were defined
as shocks before the mainshock and 0.45 smaller than the
mainshock in magnitude. They obtained the probability that
a cluster has one or more foreshocks was 7.2% if the MBC
method was used for declustering, and 3.7% if the SLC
method was used. Their results implied that a good declus-
tering method is essential to study foreshocks. From the defi-
nition of �, the probabilities that a background earthquake is
a “foreshock defined by Ogata et al.” corresponds to 1

−��m ,m+0.45�. We plot 1− �̂�m ,m+0.45� for the analyzed

JMA data in Fig. 9. Even though the values of 1− �̂�m ,m
+4.5� vary from 2% to 6% for lower magnitudes, their mean
value is around 3–4%. Thus our results using the stochastic
reconstruction methods are closer to the probability esti-

mated by using the SLC method than by using the MBC
method.

VI. DISCUSSION

We have used two methods to calculate the probability
that an earthquake event of a given magnitude produces at
least one descendent of another given magnitude: One is
based on the explicit formulation of the clustering model,
and the other is based on stochastic reconstruction with the
probabilities that one event is the descendant of another pre-
vious event. For the second method, we need a large enough
number of events to make the estimation. The advantage of
this method is that it gives more information of the data than
what can be obtained purely from the model.

Zhuang et al. �42� give a list of discrepancies between the
ETAS model and the real seismicity and note that the ETAS
model, even though it is proved to be the best model in
describing earthquake clusters in practice at the current
stage, is only just a “first-order” approximation of seismicity.
Seismicity is much more complicated than in the ETAS
model. The background seismicity and the triggering behav-
iors of earthquakes may change from time to time and place
to place, because of the change of the complicated stress
fields. An improved model, if these discrepancies and the
complexity of seismicity are considered, definitely will ben-
efit from our understanding of foreshocks and earthquake
prediction.
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As mentioned in the Introduction, the problem of whether
foreshocks are mainshocks whose aftershocks happen to be
bigger is of interest. From our analysis, the classification of
background events and triggered events is more essential
than the classification of foreshocks, mainshocks, and after-
shocks. Foreshocks and mainshocks are not easily compa-
rable in triggering other events, because a foreshock is al-
ways a background event while a mainshock may be a
background event or an event triggered by a previous event.
The events among the triggered events corresponding to
foreshocks in the background events are the triggered events
which have one or more larger descendants. They have
higher ability in producing offspring, larger or not, than fore-
shocks, which is due to the main differences between trig-
gered events and background events. Thus, the relation be-
tween foreshocks and mainshocks is that the foreshock and
the background mainshock are the complementary parts in
the background seismicity.

Another important problem is how to make use of the
above results for the purpose of earthquake prediction. The
results of this paper and other related ones prove these facts:
�1� the occurrence of big earthquakes following the so-called
“foreshocks” is not due to coincidence; �2� given an event,
the probability that it is a foreshock is overestimated if it is
estimated by using the ETAS model or the Omori-Utsu for-
mula with the Gentenburg-Richter law for the magnitude; �3�
prediction based on foreshocks can be implemented based on
a clustering model more complicated than the ETAS model.

VII. CONCLUSIONS

In this paper, based on the space-time ETAS model, we
obtained the key equation for the probability for the
magnitude of the largest descendant from a given ancestor,
as ��m ,m�� in Eq. �11�. When m�→, ��m ,m��
�exp�−�e�m−�m� /��, ��exp�−�em−m��, and ��m ,m��
� Pc�m� for the cases where the process are subcritical, criti-
cal, and supercritical, respectively. We define foreshocks
naturally by background events that have at least one larger
descendant. The probability that a background event is a
foreshock can obtained from Eq. �11�.

We also analyze the JMA catalog to verify our theories.
To obtain ��m ,m��, two methods are used: one is directly
computed from the integral equations �12� and �13�, and the
other by using stochastic reconstruction �see �B3� in Appen-
dix B�. Because of the different behaviors in triggering off-
spring between background events and triggered events, we
evaluate the corresponding � function for both background
events and triggered events. For a background event of a
magnitude from 4.2 to 6.0, the probability that it is a fore-
shock is about 8%. Our outputs are very close to the results
obtained by using a conventional foreshock definition and a
conventional “single-linked cluster” �SLC� declustering
method.
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APPENDIX A: CRITICALITY OF THE ETAS MODEL

In the process of the ETAS model, the background pro-
cess is Poisson with an intensity function ��t ,x ,y ,m�; once
an event occurs, it produces an offspring process with an
intensity as the aforementioned �. If we denote the back-
ground events as the generation G0, with the intensity func-
tion V0�� ,x ,y ,m�=��t ,x ,y ,m�, then the intensity function
for the first generation G1 is

V1�t,x,y,m� =
 
 
 

S

��t,x,y,m;t�,x�,y�,m��

� V0�t�,x�,y�,m��dt� dx� dy� dm�, �A1�

where S represents the whole time-space-magnitude range.
For simplification, X represents the vector �t ,x ,y ,m�, X� is
�t� ,x� ,y� ,m�� and �A1� can be simplified as

V1�X� = 

S

��X;X��V0�X��dX�. �A2�

Similarly, the intensity function for the nth generation is

Vn�X� = 

S

��X;X��Vn−1�X��dX�. �A3�

Thus

Vn�X� = 

S

��n��X;X��V0�X��dX�, �A4�

where

��1��X;X�� = ��X;X�� , �A5�

and

��k��X;X�� = 

S

��k−1��X;X*���X*;X��dX*, �A6�

where X* is an abbreviation of �t* ,x* ,y* ,m*�. Suppose that
a�X�� and b�X� are the left and right eigenfunctions of �
corresponding to the maximum eigenvalue �, i.e.,

�a�X�� = 

S

a�X���X;X��dX , �A7�

and

�b�X� = 

S

h�X;X��b�X��dX�, �A8�

respectively, satisfying that
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S

a�X�b�X�dX = 1. �A9�

Let

��X;X�� = a�X��b�X� , �A10�

i.e., � gives the projection operator corresponding to �, or



S

��X;X*���X*;X��dX* = 

S

h�X;X*���X*;X��dX*

= ���X;X�� . �A11�

Reconsider Eq. �A4�, when n→,

��n�

�n → � , �A12�

and thus

Vn�X� → �n

S

��X;X��V0�X��dX�. �A13�

From Eq. �A13�, we can see that if ��1, then Vn→0 when
n→, and that if �	1, then Vn→ when n→. Here, � is
called the critical parameter because if ��1, the process is
stable and otherwise the population is explosive to infinity.

Equation �A13� can be rewritten as

Vn�X� → �n

S

b�X�a�X��V0�X��dX�

= �nb�X�

S

a�X��V0�X��dX� = �nb�X� � const,

�A14�

implying that b�X� is the asymptotic intensity of the popula-
tion in the nth generation, when n→.

The eigenfunction a�X�� can be interpreted as the
asymptotic ability in producing offspring, directly and indi-
rectly, from an ancestor �X�	 because

lim
n→

�
i=n

 

S

��k��X;X��dX = lim
n→

�
i=n



�i

S

��X;X��dX

= lim
n→

�
i=n



�ia�X��

S

b�X�dX

= lim
n→

�n

1 − �
a�X�� � const.

�A15�

For an ETAS model with a magnitude-separable and tem-
poral constant background rate and a fully separable uniform
clustering response, i.e.,

��t,x,y,m� = ��t,x,y�s�m� �A16�

��t,x,y� = ��x,y� + �
i:ti�t

��mi�g�t − ti�f�x − xi,y − yi;mi� ,

�A17�

the eigenvalue equations are

�a�t�,x�,y�,m�� =
 
 
 

S

a�t,x,y,m���m��g�t − t��

� f�x − x�,y − y�;m��s�m�dtdxdydm ,

�b�t,x,y,m� =
 
 
 

S

��m��g�t − t��f�x − x�,y − y�;m��

� s�m�b�t�,x�,y�,m��dt� dx� dy� dm�.

Only consider the functions of m� and m for the forms of a
and b. The above eigenequations can be simplified as

�a�m�� = ��m��

M

a�m�s�m�dm , �A18�

�b�m� = s�m�

M

��m��b�m��dm�, �A19�

where M is the magnitude range. We can see that

a�m�� = C1��m�� , �A20�

and

b�m� = C2s�m� . �A21�

Substituting a�m�� and b�m� back into Eqs. �A18� and �A19�,
we can get that

� = 

M

��m�s�m�dm . �A22�

For the model given in Sec. II, the criticality parameter

� = 

mc



s�m���m�dm =
A�

� − �
.

APPENDIX B: �„m1 ,m2… BY RECONSTRUCTION

Sections III and IV give the theory and methods for cal-
culating the probability that an event produces at least one
larger descendant when the process of seismicity is con-
trolled by the ETAS model. However, the true model is al-
ways unknown for seismicity. What we know is the observa-
tion, i.e., a catalog of earthquakes. The ETAS model is just a
rough approximation of the seismicity. For example, Zhuang
et al. �42� show that the triggering behaviors are different
between background event and triggered events. To get more
information on ��m ,m�� from the data than from the model,
we need to introduce a special technique, which is called the
stochastic reconstruction method, developed by Zhuang et al.
��41,42��, following up the initial idea of Kagan and Knop-
poff �7�, to accomplish this task.
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Once the conditional intensity function is estimated, it
provides us a good estimate of the probability of how likely
an event is a background event or triggered by others. The
contribution of the background seismicity rate at the occur-
rence time and location of the ith event is

�i =
��xi,yi�

��ti,xi,yi�
. �B1�

If we remove the ith event with probability 1−�i for all the
events in the process, we can realize a process with the oc-
currence rate of ��x ,y� �see �57,58�, for justification�. Thus,
it is natural to regard �i as the probability that the ith event is
a background events. Similarly,

�ij = ���mi�g�tj − ti�f�xj − xi,yj − yi;mi�
��tj,xj,yj�

, if j 	 i ,

0, otherwise,
�
�B2�

can be regarded as the probability that the jth event is di-
rectly produced by i. It is easy to verify that � j +�i�ij =1.

The whole catalog can be separated into different clusters
the following way: For each event j, generate a random vari-
able uj uniformly distributed on �0, 1�, then select the jth
event as a background event if Uj �� j; otherwise, select the
Ijth event as the parent of event j, where Ij =min�k :� j

+�i=1
k �ij �Uj ,1�k� j	.

Such a separation can be repeated many times get many
different versions of cluster classifications. Suppose that the

total number of versions is Ñ and that, for each event i, Mi�
is the magnitude of the largest descendant from event i; then,
��m ,m�� can be estimated through

�̂�m,m�� =

�
i,�

I�Mi� � m��I�mi � m�

Ñ�
i

I�mi � m�
. �B3�

Similarly, to estimate ��m ,m�� for a background event,

�̂b�m,m�� =

�
i,�

I�Mi� � m���iI�mi � m�

Ñ�
i

I�mi � m�
, �B4�

and for a triggered event

�̂c�m,m�� =

�
i,�

I�Mi� � m���1 − �i�I�mi � m�

Ñ�
i

I�mi � m�
. �B5�

More details on the uses of stochastic reconstruction tech-
niques can be found in �42�.
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